The study of gene expression as a tool for predicting response to chemotherapy in pancreatic cancer.

Apostolou P.1, Toloudi M.1, Chatziioannou M.1, Ioannou E.1, Papasotiriou I.1

1Research Genetic Cancer Center Ltd (R.G.C.C. Ltd), 115 M.Alexandrou Str, 53070 Filotas, Florina, Greece

Background: Pancreatic cancer is a malignant neoplasm arising from malignant cells which form the pancreas. The combination of 5-Fluorouracil, irinotecan and oxaliplatin is mostly used in treatment of pancreatic cancer. In the present study a group of genes, which are correlated with basic signal transduction pathways, were tested in order to determine whether any of these could be an indicator of response to the above chemotherapeutics.

Methods: The experiments were performed by using a human Caucasian pancreatic cell line (PANC-1) and a human primary pancreatic adenocarcinoma cell line (BxPC-3) provided by the European Collection of Cell Cultures (ECACC). Each cell line was treated with different concentrations, both in combination of the above drugs, as well as in monotherapy. The cMET, AKT-1, AKT-2, IGFR-1, IGFR-2, PDGFRα, PDGFRβ, EGFR, ERK1, ERK2, MEK1, MEK2, FGFR2, VEGFR3 and mTOR genes were tested with RT-qPCR in both cases (pre- and post- treatment). The 18S rRNA was used as reference gene and the analysis was performed according to Livak method ($2^{ΔΔCt}$) normalized to a normal PBMC’s cell line. Finally, the cell viability was measured with propidium iodide staining.

Conclusions: The resistance to chemotherapy is one of the major problems in cancer treatment. The resistance is either natively existed (primary), or developed by the cancer cells (secondary). The study of the above panel of genes or individual could be very useful in determining the response to chemotherapeutics. The method is easily implemented, with minimum time and cost requirements. It is essential to perform further studies in other pancreatic cancer cell lines and in more samples, so as to be used at clinical level. However the first results may be quite encouraging.

Results: The cellular-based assays have shown that the combination of drugs was, in most of cases more effective compared to monotherapy. In PANC-1 cell line, the cells that were treated with 0.1μM of each drug, showed lower mortality rate than the others. The molecular biology assays showed that gene expression levels were different between the two cell lines pre- and post- treatment. However, the greater difference was observed for FGFR2, EGFR, VEGFR3, PDGFRα and cMET genes.

![Figure 1: Viability of human pancreatic cancer cells, after 48h of incubation](image1)

![Figure 2: Relative gene expression among PANC-1, BxPC-3 and normal PBMC cell lines](image2)

![Figure 3: PANC-1 cell line pre- and post- treatment](image3)

Selected Reference: