Comparison of Hypoxia Inducible Factor 1α (HIF-1α) levels in HCT-15 cell line and Human Colon Cancer Stem Cell-like Cells

Vergleich auf Hypoxia Inducible Faktor 1α (HIF-1α) spiegel zwischen HCT-15 Zell Linie und Human Dundarm krebs stem cell-like Zellen

M. Chatziioannou¹, P. Apostolou¹, M. Toloudi¹, I. Papasotiriou¹
¹R.G.C.C. Ltd. (Research Genetic Cancer Centre Limited), 115 M. Alexandrou Str., GR- 53070, Filotas, Greece

Aim

Hypoxia Inducible Factors (HIFs) are transcription factors that respond to decrease of oxygen level in the cellular environment. Three types of HIFs are known, HIF-1, HIF-2 and HIF-3. All HIFs are heterodimers consisted of α and β subunits. HIF signaling plays a central role in angiogenesis and in the regulation of human metabolism and HIF-1 specifically is responsible for cellular and systemic responses to hypoxia. HIF-1 consists of an α and a β subunit. HIF-1α is oxygen dependent and HIF-1β a constitutively-expressed aryl hydrocarbon receptor nuclear translocator (ARNT).

The aim of this study was to quantify and correlate the HIF-1α levels between Human Colon Cancer Cells and Human Colon Cancer Stem Cell-like Cells (Colon CSCs) growing in normal oxygen concentration and hypoxia.

Materials and methods

Growth curves were generated for three cultures, HCT-15, Colon CSCs growing at physiological O₂ concentration and Colon CSCs growing at absence of O₂. HIF-1α levels were quantified with both flow cytometry and Real Time PCR.

Results

Data were drawn and correlated between the three cultures. HIF-1α levels were higher in Colon CSCs than in HCT-15, both growing at physiological O₂ concentration. The HIF-1α levels of Colon CSCs growing at absence of O₂ are indicative of resistance to cell death cause of hypoxia after an adjustment period.

Conclusion

HIF-1 is expressed in most of the oxygen breathing animals and is responsible for cellular and systemic responses to hypoxia. It consists of two subunits (α and β). The α subunit is oxygen dependent and was quantified in HCT-15 cells and in Colon CSCs to investigate the percentage of metabolic changes that hypoxia promotes in Colon CSCs. The results indicate that Colon CSCs, which express higher levels of HIF-1α, have a higher angiogenic and metabolic profile than Colon Cancer Cells, both during normal O₂ concentrations and hypoxia.

References